Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nearly 10% of Earth’s continents are covered by river floodplains. These landscapes serve as weathering reactors whereby particles eroded from mountains undergo chemical and physical alteration before being exported to oceans. The time a particle spends in floodplain reservoirs regulates the style and extent of continental chemical weathering and the fate of terrestrial organic carbon. Despite its importance for the global carbon cycle, we still lack a quantitative understanding of floodplain storage timescales. Using a combination of geomorphic mapping, radiocarbon and luminescence dating, and numerical simulations of meander dynamics, we identify well-conserved scaling laws that describe floodplain storage times. Our results reveal that, to first order, floodplain storage durations are set by the ratio of river width to migration rate. The fact that most rivers erode about 1% of their width per year leads to a typical floodplain storage duration of ~5 thousand years.more » « lessFree, publicly-accessible full text available April 11, 2026
-
Abstract Pleistocene outburst floods from the drainage of glacial Lake Missoula carved bedrock canyons into the Columbia Plateau in eastern Washington, USA, forming the Channeled Scabland. However, rates of bedrock incision by outburst floods are largely unconstrained, which hinders the ability to link flood hydrology with landscape evolution in the Channeled Scabland and other flood-carved landscapes. We used long profiles of hanging tributaries to reconstruct the pre-flood topography of the two largest Channeled Scabland canyons, upper Grand Coulee and Moses Coulee, and a smaller flood-eroded channel, Wilson Creek. The topographic reconstruction indicates floods eroded 67.8 km3, 14.5 km3, and 1.6 km3 of rock from upper Grand Coulee, Moses Coulee, and Wilson Creek, respectively, which corresponds to an average incision depth of 169 m, 56 m, and 10 m in each flood route. We simulated flood discharge over the reconstructed, pre-flood topography and found that high-water evidence was emplaced in each of these channels by flow discharges of 3.1 × 106 m3 s−1, 0.65–0.9 × 106 m3 s−1, and 0.65–0.9 × 106 m3 s−1, respectively. These discharges are a fraction of those predicted under the assumption that post-flood topography was filled to high-water marks for Grand and Moses Coulees. However, both methods yield similar results for Wilson Creek, where there was less erosion. Sediment transport rates based on these discharges imply that the largest canyons could have formed in only about six or fewer floods, based on the time required to transport the eroded rock from each canyon, with associated rates of knickpoint propagation on the order of several km per day. Overall, our results indicate that a small number of outburst floods, with discharges much lower than commonly assumed, can cause extensive erosion and canyon formation in fractured bedrock.more » « less
-
Abstract. Lateral migration of meandering rivers poses erosional risks to human settlements, roads, and infrastructure in alluvial floodplains. While there is a large body of scientific literature on the dominant mechanisms driving river migration, it is still not possible to accurately predict river meander evolution over multiple years. This is in part because we do not fully understand the relative contribution of each mechanism and because deterministic mathematical models are not equipped to account for stochasticity in the system. Besides, uncertainty due to model structure deficits and unknown parameter values remains. For a more reliable assessment of risks, we therefore need probabilistic forecasts. Here, we present a workflow to generate geomorphic risk maps for river migration using probabilistic modeling. We start with a simple geometric model for river migration, where nominal migration rates increase with local and upstream curvature. We then account for model structure deficits using smooth random functions. Probabilistic forecasts for river channel position over time are generated by Monte Carlo runs using a distribution of model parameter values inferred from satellite data. We provide a recipe for parameter inference within the Bayesian framework. We demonstrate that such risk maps are relatively more informative in avoiding false negatives, which can be both detrimental and costly, in the context of assessing erosional hazards due to river migration. Our results show that with longer prediction time horizons, the spatial uncertainty of erosional hazard within the entire channel belt increases – with more geographical area falling within 25 % < probability < 75 %. However, forecasts also become more confident about erosion for regions immediately in the vicinity of the river, especially on its cut-bank side. Probabilistic modeling thus allows us to quantify our degree of confidence – which is spatially and temporally variable – in river migration forecasts. We also note that to increase the reliability of these risk maps, we need to describe the first-order dynamics in our model to a reasonable degree of accuracy, and simple geometric models do not always possess such accuracy.more » « less
-
Abstract Permafrost influences 25% of land in the Northern Hemisphere, where it stabilizes the ground beneath communities and infrastructure and sequesters carbon. However, the coevolution of permafrost, river dynamics, and vegetation in Arctic environments remains poorly understood. As rivers meander, they erode the floodplain at cutbanks and build new land through bar deposition, creating sequences of landforms with distinct formation ages. Here we mapped these sequences along the Koyukuk River floodplain, Alaska, analyzing permafrost occurrence, and landform and vegetation types. We used radiocarbon and optically stimulated luminescence (OSL) dating to develop a floodplain age map. Deposit ages ranged from modern to 10 ka, with more younger deposits near the modern channel. Permafrost rapidly reached 50% areal extent in all deposits older than 200 years then gradually increased up to ∼85% extent for deposits greater than 4 Kyr old. Permafrost extent correlated with increases in black spruce and wetland abundance, as well as increases in permafrost extent within wetland, and shrub and scrub vegetation classes. We developed an inverse model to constrain permafrost formation rate as a function of air temperature. Permafrost extent initially increased by ∼25% per century, in pace with vegetation succession, before decelerating to <10% per millennia as insulating overbank mud and moss slowly accumulated. Modern permafrost extent on the Koyukuk floodplain therefore reflects a dynamic balance between widespread, time‐varying permafrost formation and rapid, localized degradation due to cutbank erosion that might trigger a rapid loss of permafrost with climatic warming.more » « less
-
This dataset reports data from Nghiem et al. (2024), "Testing floc settling velocity models in rivers and freshwater wetlands." Please refer to "readme.xlsx" for a description of each data file. The original sediment grain size distribution data for each sample can be found online on the NASA Delta-X repository.more » « less
-
Abstract. Flocculation controls mud sedimentation and organic carbon burial rates by increasing mud settling velocity. However, calibration and validation of floc settling velocity models in freshwater are lacking. We used a camera, in situ laser diffraction particle sizing, and suspended sediment concentration–depth profiles to measure flocs in Wax Lake Delta, Louisiana. We developed a new workflow that combines our multiple floc data sources to distinguish between flocs and unflocculated sediment and measure floc attributes that were previously difficult to constrain. Sediment finer than ∼10 to 55 µm was flocculated with median floc diameter of 30 to 90 µm, bulk solid fraction of 0.05 to 0.3, fractal dimension of ∼2.1, and floc settling velocity of ∼0.1 to 1 mm s−1, with little variation along water depth. Results are consistent with a semi-empirical model indicating that sediment concentration and mineralogy, organics, water chemistry, and, above all, turbulence control floc settling velocity. Effective primary particle diameter is ∼2 µm, about 2 to 6 times smaller than the median primary particle diameter, and is better described using a fractal theory. Flow through the floc increases settling velocity by an average factor of 2 and up to a factor of 7 and can be described by a modified permeability model that accounts for the effect of many primary particle sizes on flow paths. These findings help explain discrepancies between observations and an explicit settling model based on Stokes' law that depends on floc diameter, permeability, and fractal properties.more » « less
-
Due to atmospheric circulation and preservation of organic matter, large amounts of mercury (Hg) are stored in permafrost regions. Due to rapid warming and thawing permafrost in the Arctic, this Hg may be released, potentially degrading water quality and impacting human health. River bank erosion in particular has the ability to quickly mobilize large amounts of Hg-rich floodplain sediments. As part of a National Science Foundation (NSF) funded project to better understand the effects of erosion in the Yukon River Basin, floodplain sediments were collected between June and September 2022 at two locations underlain by discontinuous permafrost within the Yukon River Basin: Beaver, Alaska (AK) (65.700 N, 156.387 W) and Huslia, AK (66.362N, 147.398 W). This dataset contains mercury contents for collected floodplain sediments measured by direct thermal decomposition. Sample metadata also includes information recorded in the field (location, visual grain size description, and sample collection depth) and collected post sample processing (water content and dry density).more » « less
-
Abstract How will bank erosion rates in Arctic rivers respond to a warming climate? Existing physical models predict that bank erosion rates should increase with water temperature as permafrost thaws more rapidly. However, the same theory predicts much faster erosion than is typically observed. We propose that these models are missing a key component: a layer of thawed sediment on the bank that buffers heat transfer and slows erosion. We developed a 1D model for this thawed layer, which reveals three regimes for permafrost riverbank erosion. Thaw‐limited erosion occurs in the absence of a thawed layer, such that rapid pore‐ice melting sets the pace of erosion, consistent with existing models. Entrainment‐limited erosion occurs when pore‐ice melting outpaces bank erosion, resulting in a thawed layer, and the relatively slow entrainment of sediment sets the pace of erosion similar to non‐permafrost rivers. Third, the intermediate regime occurs when the thawed layer goes through cycles of thickening and failure, leading to a transient thermal buffer that slows thaw rates. Distinguishing between these regimes is important because thaw‐limited erosion is highly sensitive to water temperature, whereas entrainment‐limited erosion is not. Interestingly, the buffered regime produces a thawed layer and relatively slow erosion rates like the entrainment‐limited regime, but erosion rates are temperature sensitive like the thaw‐limited regime. The results suggest the potential for accelerating erosion in a warming Arctic where bank erosion is presently thaw‐limited or buffered. Moreover, rivers can experience all regimes annually and transition between regimes with warming, altering their sensitivity to climate change.more » « less
An official website of the United States government
